You're given $n$ integers $a_1,a_2,\dots,a_n$, you need to count the number of ways to choose some of them (no duplicate) to make the sum equal to $S$,. Print the answer in modulo $10^9+7$. How to solve this problem in polynomial time?
№ | Пользователь | Рейтинг |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 151 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Rev. | Язык | Кто | Когда | Δ | Комментарий | |
---|---|---|---|---|---|---|
en3 | rlajkalspowq | 2020-04-01 06:00:51 | 197 | |||
en2 | rlajkalspowq | 2019-12-06 17:02:56 | 19 | Tiny change: 'ual to $S$, in modulo' -> 'ual to $S$. Print the answer in modulo' | ||
en1 | rlajkalspowq | 2019-12-06 17:01:08 | 246 | Initial revision (published) |
Название |
---|