Apologize for my bad English.↵
↵
We consider to make the answer with a fixed $x=2^{p_1}3^{p_2}5^{p_3}...$. It's $\prod^i{Cdisplaystyle\prod^i C^{p_i}_{x+p_i-1}^p_i} =\prod^i{\frac {x(x+1)(x+2)...(x+p_i-1)}{p_i!}}$ and is already proved in many editorials. Note that it's a polynomial of $x$, and it's highest exponent is no more than $\lfloor\log 2\times 10^5\rfloor = 16$.↵
↵
To calculate the answer, we should know the value of $\displaystyle\sum_{i=0}^x i^d$. Actually, we have an equation:↵
↵
![ ](https://cdn.luogu.com.cn/upload/image_hosting/xqhcwd08.png)↵
↵
From Chinese OI-wiki, where $B_i$ stands for the i-th Bernoulli's Number.↵
↵
Thus, we can solve the problem in $k\log^2 k$ time. Very slow, bro!↵
↵
<spoiler summary="Code:">↵
...↵
```cpp↵
#include <bits/stdc++.h>↵
using namespace std;↵
#define int long long↵
#define M 998244353↵
constexpr int MAXN = 18;↵
int B[MAXN], C[MAXN][MAXN], inv[MAXN];↵
#define N 200005↵
vector<int> ex[N];↵
↵
void init() {↵
for (int i = 0; i < MAXN; i++) {↵
C[i][0] = C[i][i] = 1;↵
for (int k = 1; k < i; k++)↵
C[i][k] = (C[i — 1][k] % M + C[i — 1][k — 1] % M) % M;↵
}↵
inv[1] = 1;↵
for (int i = 2; i < MAXN; i++)↵
inv[i] = (M — M / i) * inv[M % i] % M;↵
B[0] = 1;↵
for (int i = 1; i < MAXN; i++) {↵
int ans = 0;↵
if (i == MAXN — 1)↵
break;↵
for (int k = 0; k < i; k++) ↵
ans += C[i + 1][k] * B[k], ans %= M;↵
ans = (ans * (-inv[i + 1]) % M + M) % M;↵
B[i] = ans;↵
}↵
for (int i = 2; i < N; i++) {↵
int d = i, cur = 0;↵
for (int j = 2; j * j <= d; j++) {↵
cur = 0;↵
while (d % j == 0)↵
cur++, d /= j;↵
if (cur)↵
ex[i].push_back(cur);↵
}↵
if (d > 1)↵
ex[i].push_back(1);↵
}↵
}↵
#define Lim 40005↵
int b1[MAXN][Lim], b2[MAXN][Lim];↵
↵
void pwinit() {↵
for (int i = 1; i < MAXN; i++) {↵
b1[i][0] = b2[i][0] = 1;↵
for (int j = 1; j < Lim; j++)↵
b1[i][j] = b1[i][j — 1] * i % M;↵
b2[i][1] = b1[i][Lim — 1] * i % M;↵
for (int j = 2; j < Lim; j++)↵
b2[i][j] = b2[i][j — 1] * b2[i][1] % M;↵
}↵
}↵
↵
int qpow(int a, int t) {↵
if (a < MAXN)↵
return b1[a][t % Lim] * b2[a][t / Lim] % M;↵
if (!t)↵
return 1;↵
if (t == 1)↵
return a;↵
int x = qpow(a, t / 2);↵
x = x * x % M;↵
if (t & 1)↵
x = x * a % M;↵
return x;↵
}↵
int poly[MAXN], tmp[MAXN];↵
↵
void mul(int k) {↵
for (int i = 0; i < MAXN; i++)↵
tmp[i] = poly[i] * k % M;↵
for (int i = 1; i < MAXN; i++)↵
tmp[i] = (poly[i — 1] + tmp[i]) % M;↵
for (int i = 0; i < MAXN; i++)↵
poly[i] = tmp[i];↵
}↵
↵
int calc(int x, int lim) {↵
memset(poly, 0, sizeof(poly)), poly[0] = 1;↵
int dv = 1;↵
for (int it : ex[x])↵
for (int j = 0; j < it; j++)↵
mul(j), dv = dv * qpow(j + 1, M — 2) % M;↵
int res = 0;↵
for (int i = 0; i < MAXN; i++) {↵
int cur = 0;↵
for (int j = 0; j <= i; j++)↵
cur += C[i + 1][j] * B[j] % M * qpow(lim + 1, i — j + 1) % M;↵
cur %= M, cur = cur * qpow(i + 1, M — 2) % M;↵
res = (res + cur * poly[i]) % M;↵
}↵
return res * dv % M;;↵
}↵
↵
void solve() {↵
int n, m;↵
cin >> n >> m;↵
cout << m << ' ';↵
for (int i = 2; i <= n; i++)↵
cout << calc(i, m) << ' ';↵
cout << '\n';↵
}↵
↵
signed main() {↵
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);↵
int T;↵
cin >> T, init(), pwinit();↵
while (T--)↵
solve();↵
}↵
```↵
</spoiler>↵
↵
↵
↵
We consider to make the answer with a fixed $x=2^{p_1}3^{p_2}5^{p_3}...$. It's $\
↵
To calculate the answer, we should know the value of $\displaystyle\sum_{i=0}^x i^d$. Actually, we have an equation:↵
↵
![ ](https://cdn.luogu.com.cn/upload/image_hosting/xqhcwd08.png)↵
↵
From Chinese OI-wiki, where $B_i$ stands for the i-th Bernoulli's Number.↵
↵
Thus, we can solve the problem in $k\log^2 k$ time. Very slow, bro!↵
↵
<spoiler summary="Code:">↵
...↵
```cpp↵
#include <bits/stdc++.h>↵
using namespace std;↵
#define int long long↵
#define M 998244353↵
constexpr int MAXN = 18;↵
int B[MAXN], C[MAXN][MAXN], inv[MAXN];↵
#define N 200005↵
vector<int> ex[N];↵
↵
void init() {↵
for (int i = 0; i < MAXN; i++) {↵
C[i][0] = C[i][i] = 1;↵
for (int k = 1; k < i; k++)↵
C[i][k] = (C[i — 1][k] % M + C[i — 1][k — 1] % M) % M;↵
}↵
inv[1] = 1;↵
for (int i = 2; i < MAXN; i++)↵
inv[i] = (M — M / i) * inv[M % i] % M;↵
B[0] = 1;↵
for (int i = 1; i < MAXN; i++) {↵
int ans = 0;↵
if (i == MAXN — 1)↵
break;↵
for (int k = 0; k < i; k++) ↵
ans += C[i + 1][k] * B[k], ans %= M;↵
ans = (ans * (-inv[i + 1]) % M + M) % M;↵
B[i] = ans;↵
}↵
for (int i = 2; i < N; i++) {↵
int d = i, cur = 0;↵
for (int j = 2; j * j <= d; j++) {↵
cur = 0;↵
while (d % j == 0)↵
cur++, d /= j;↵
if (cur)↵
ex[i].push_back(cur);↵
}↵
if (d > 1)↵
ex[i].push_back(1);↵
}↵
}↵
#define Lim 40005↵
int b1[MAXN][Lim], b2[MAXN][Lim];↵
↵
void pwinit() {↵
for (int i = 1; i < MAXN; i++) {↵
b1[i][0] = b2[i][0] = 1;↵
for (int j = 1; j < Lim; j++)↵
b1[i][j] = b1[i][j — 1] * i % M;↵
b2[i][1] = b1[i][Lim — 1] * i % M;↵
for (int j = 2; j < Lim; j++)↵
b2[i][j] = b2[i][j — 1] * b2[i][1] % M;↵
}↵
}↵
↵
int qpow(int a, int t) {↵
if (a < MAXN)↵
return b1[a][t % Lim] * b2[a][t / Lim] % M;↵
if (!t)↵
return 1;↵
if (t == 1)↵
return a;↵
int x = qpow(a, t / 2);↵
x = x * x % M;↵
if (t & 1)↵
x = x * a % M;↵
return x;↵
}↵
int poly[MAXN], tmp[MAXN];↵
↵
void mul(int k) {↵
for (int i = 0; i < MAXN; i++)↵
tmp[i] = poly[i] * k % M;↵
for (int i = 1; i < MAXN; i++)↵
tmp[i] = (poly[i — 1] + tmp[i]) % M;↵
for (int i = 0; i < MAXN; i++)↵
poly[i] = tmp[i];↵
}↵
↵
int calc(int x, int lim) {↵
memset(poly, 0, sizeof(poly)), poly[0] = 1;↵
int dv = 1;↵
for (int it : ex[x])↵
for (int j = 0; j < it; j++)↵
mul(j), dv = dv * qpow(j + 1, M — 2) % M;↵
int res = 0;↵
for (int i = 0; i < MAXN; i++) {↵
int cur = 0;↵
for (int j = 0; j <= i; j++)↵
cur += C[i + 1][j] * B[j] % M * qpow(lim + 1, i — j + 1) % M;↵
cur %= M, cur = cur * qpow(i + 1, M — 2) % M;↵
res = (res + cur * poly[i]) % M;↵
}↵
return res * dv % M;;↵
}↵
↵
void solve() {↵
int n, m;↵
cin >> n >> m;↵
cout << m << ' ';↵
for (int i = 2; i <= n; i++)↵
cout << calc(i, m) << ' ';↵
cout << '\n';↵
}↵
↵
signed main() {↵
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);↵
int T;↵
cin >> T, init(), pwinit();↵
while (T--)↵
solve();↵
}↵
```↵
</spoiler>↵
↵
↵