There are some functions $$$T_y$$$, which are defined as:
- $$$\forall j\le 1,y\in (0,1):T_y(j):=1$$$
- $$$\forall y\in (0,1):T_y(x):=T_y(xy)+T_y(x-xy)+1$$$
Find $$$y$$$ (s) so that the order of $$$\lim_{x\rightarrow+\infty}T_y(x)$$$ is minimized.
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
A math problem
There are some functions $$$T_y$$$, which are defined as:
Find $$$y$$$ (s) so that the order of $$$\lim_{x\rightarrow+\infty}T_y(x)$$$ is minimized.
Name |
---|