Is it possible to calculate the following recurrences in $$$O(N*2^N)$$$.
1) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1|m_2 = mask$$$
2) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1 \oplus m_2 = mask$$$
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3821 |
3 | Benq | 3736 |
4 | Radewoosh | 3631 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3388 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
dp with bitmasking ideas needed.
Is it possible to calculate the following recurrences in $$$O(N*2^N)$$$.
1) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1|m_2 = mask$$$
2) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1 \oplus m_2 = mask$$$
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en2 | ASHWANTH_K | 2024-05-11 06:08:51 | 39 | Tiny change: '2 = mask$ \n\n\n ' -> '2 = mask$ and $m_1$ ,$m_2$ are subsets of mask.\n\n\n ' | ||
en1 | ASHWANTH_K | 2024-05-11 06:07:58 | 319 | Initial revision (published) |
Name |
---|