First,it's not hard to come up with query ? 1
.Assume we have got $$$t$$$,the answer is either $$$2t$$$ or $$$2t-1$$$.
Then we can query ? 2t
.It can be proven the answer of ? 2t
is always different from ? 2t-1
.
Another approach:query ? 2
or ? 2m-1
.Although it doesn't work in some small cases,you can do another query to avoid conflict.
104855B - Yugandhar's Letter for Diya
Every time choosing adjacent cell to blue cell is optimal because it can stop the growth of blue cell in that particular direction, so obviously if $$$k>=4$$$ we can surround the blue cell so answer will be $$$nm-1$$$.
For $$$k=1$$$ we will take the portion (up side, down side, left side, right side) of cells to initial blue cell containing maximum white cells, similarly for $$$k=2$$$ ($$$2$$$ portions) and $$$3$$$ ($$$3$$$ portions).
In general, the score for index $$$i$$$ is:
$$$\Sigma_{j = 1}^{i} min(a_j, a_i)$$$ + $$$\Sigma_{j = i + 1}^{n} min(a_j, a_i - 1)$$$
Let's solve this problem starting from the box which has the smallest number of salmons, until the largest number of salmons. This can be calculated by some simple algebra with the help of data structure such as fenwick tree.
Let's maintain the set of \textit{reachable} nodes (i.e. nodes $$$x$$$ such that there exist a \textit{colorful} path starting from $$$1$$$ and ending at $$$x$$$)~--- $$$Q$$$, alongside with the set of colors we can reach node $$$v$$$ with (i.e. the set of distinct colors of last edge of all valid \textit{colorful} paths starting from $$$1$$$ and ending at $$$v$$$)~--- $$$colors[v]$$$ for each $$$v$$$.
Now, we will process nodes, one by one, in bfs order using queue $$$Q$$$.
Let $$$v$$$ be the node we currently processing. Since $$$v \in Q$$$ then $$$colors[v]$$$ is non-empty.
Let's notice that in the case of having at least $$$2$$$ distinct colors in the $$$colors[v]$$$, we can extend the current \textit{colorful} path with outgoing edges from $$$v$$$ of any color, while in case of $$$color[v]$$$ containing a single color~--- $$$c$$$, we can extend the current \textit{colorful} path with outgoing edges from $$$v$$$ of any color, except for $$$c$$$.
Clearly, we only need to maintain at most $$$2$$$ colors in $$$colors[v]$$$. Moreover, we will add node $$$v$$$ in $$$Q$$$ only when the size of $$$color[v]$$$ is changed.
Therefore, we will process each node at most $$$2$$$ times, so the total complexity will be $$$O(n + m)$$$.
Let's consider what's the possible value set.
Let's write $$$a_1+b_2+a_3+c_4+\dots$$$ like a string abac...
We can achieve the string iff:
- When we remove all \t{b}, the remaining string begins with \t{c} and ends with \t{a}.
Necessity is almost obvious.
Then, how to construct? Let's think about an example : bbccbabaabbcba
.
First, when $$$S_i=b$$$, let's set $$$p_i = i$$$. Now $$$p=(1,2,?,?,5,?,7,?,?,10,11,?,13,?)$$$.
Next, split the remaining string(consist of only a
or c
) into cc...caa...a
.
Finally, we can achieve every cc...caa...a
with a rotation of $$$p_i = i$$$.
Let's consider $$$3,4,6,8,9$$$-th characters. They are ccaaa
. Then, we rotate $$$p$$$ to $$$(8,9,3,4,6)$$$ and back them to original place.
In this example, possible final $$$p=(1,2,8,9,5,3,7,4,6,10,11,14,13,12)$$$.
Now only we should do is restoreing the string. It's possible to do a DP with following states:
- There are no
a
andc
. - When we remove all
b
, current string ends withc
. - When we remove all
b
, current string ends witha
.
For ease of discussion, let $$$P$$$ be the polygon and $$$s$$$ be the size of $$$P$$$. All angles and rotations are described using radian.
Let $$$d_i$$$ be the euclidean distance from $$$(0,0)$$$ to $$$a_i$$$ and $$$\theta_i$$$ be how far you have to rotate $$$a_i$$$ clockwise with the center being $$$(0,0)$$$ such that the point lies on the non-negative side of the $$$x$$$ axis.
Observation 1. Let the minimum value of $$$s$$$ such that $$$P$$$ covers all points be $$$k$$$. Notice that if $$$s \geq k$$$, we can just scale up $$$P$$$ in its optimal positioning by $$$\frac{s}{k}$$$ and it will still covers all points. And with the definition of $$$k$$$, for all values $$$s < k$$$, there must be at least one point such that it is not covered no matter how you arrange $$$P$$$. Thus, we can do BSTA (Binary Search The Answer) with $$$l = 1 - \epsilon$$$ and $$$r = 10^5 + \epsilon$$$ until $$$r - l < \epsilon$$$. (Don't worry, it is guaranteed that if $$$s = r$$$, $$$P$$$ can cover all points).
Notice that if we have a fixed value of $$$s = mid$$$, then we only need to know if there exist a rotational orientation of $$$P$$$ such that all points are covered by $$$P$$$.
Observation 2. Focus on one of the points. Notice that if we rotate the point clockwise or counter-clockwise by $$$\frac{2\pi}{m}$$$, it will not change how far you have to rotate the point such that it is inside $$$P$$$, since it is the same as rotating $$$P$$$ by $$$\frac{2\pi}{m}$$$ (which is the same as not rotating it). Thus, we can repeatedly decrease $$$\theta_i$$$ by $$$\frac{2\pi}{m}$$$ until $$$0 \leq \theta_i < \frac{2\pi}{m}$$$ for each $$$1 \leq i \leq n$$$. It is strongly advised to use math instead of repeated subtraction. This observation also leads us to the fact that the angle of counter-clockwise rotation needed for $$$P$$$ to cover all points is in the interval $$$[0,\frac{2\pi}{m})$$$.
Let's focus back to the binary search iteration. If $$$\max_{1 \leq i \leq n}(d_i) > s$$$, then we immediately know that $$$s < k$$$. Thus, we can set $$$l := mid - \epsilon$$$ and do the binary search again. Alternatively, we can set $$$l = \max_{1 \leq i \leq n}{d_i} - \epsilon$$$ instead before doing the binary search.
For each point $$$a_i$$$, define $$$0 \leq ang_{1,i} < ang_{2,i} < \frac{2\pi}{m}$$$ as the answer to "How far do we have to rotate $$$P$$$ such that the point $$$a_i$$$ lies on one of the sides of $$$P$$$?". This can be calculated using some triangle trigonometry (see the code for implementation). Now, there are two cases:
Rotating $$$P$$$ by $$$i \in [ang_{1,i},ang_{2,i}]$$$ results in point $$$a_i$$$ being inside $$$P$$$. Then, add the segment $$$[ang_{1,i},ang_{2,i}]$$$ for possible rotations of $$$P$$$.
Rotating $$$P$$$ by $$$i \in (ang_{1,i},ang_{2,i})$$$ results in point $$$a_i$$$ being outside $$$P$$$. Then, add the segment $$$[0,ang_{1,i}]$$$ and $$$[ang_{2,i},\frac{2\pi}{m})$$$ for possible rotations of $$$P$$$.
In case of no existing value of $$$ang_{1,i}$$$ and $$$ang_{2,i}$$$, just add the segment $$$[0,\frac{2\pi}{m})$$$ for possible rotations of $$$P$$$ since the point is guaranteed to be inside $$$P$$$ no matter what. Now the problem has been reduced to this problem: Given some segments, does there exist a value such that it is covered by $$$n$$$ segments? We can easily do this in $$$O(n \cdot log(n))$$$ using sweep line. If there is, set $$$r := mid + \epsilon$$$. Otherwise, $$$l := mid - \epsilon$$$.
Time complexity: $$$O(n \cdot log(n) \cdot log(1/\epsilon))$$$
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef double db;
typedef long long ll;
typedef unsigned long long ull;
const int N=1000010;
const int LOGN=28;
const ll TMD=0;
const ll INF=2147483647;
int T,t,tt;
int main()
{
//freopen("test.in","r",stdin);
scanf("%d",&T);
while(T--)
{
printf("? 1\n");
fflush(stdout);
scanf("%d",&t);
printf("? %d\n",t*2);
fflush(stdout);
scanf("%d",&tt);
printf("! %d\n",t*2-(tt!=t*2));
fflush(stdout);
}
//fclose(stdin);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
int main(){
fast;
ll t;
cin>>t;
while(t--){
ll n,m,x,y,k;
cin>>n>>m>>x>>y>>k;
ll a1=(n*m)-(n*y);
ll a2=(n*m)-(m*x);
ll a3=(n*m)-(n*(m-y+1));
ll a4=(n*m)-(m*(n-x+1));
if(k==0) cout<<0<<endl;
else if(k==1) cout<<max({a1,a2,a3,a4})<<endl;
else if(k==2){
ll b1=a1+max((n-x)*y,(x-1)*y);
ll b2=a2+max(x*(y-1),x*(m-y));
ll b3=a3+max((m-y+1)*(x-1),(m-y+1)*(n-x));
ll b4=a4+max((n-x+1)*(m-y),(n-x+1)*(y-1));
ll b5=a1+a3;
ll b6=a2+a4;
cout<<max({b1,b2,b3,b4,b5,b6})<<endl;
}
else if(k==3){
a1=n-x;
a2=x-1;
a3=m-y;
a4=y-1;
cout<<n*m-1-min({a1,a2,a3,a4})<<endl;
}
else cout<<(n*m-1)<<endl;
}
}
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
int32_t main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t;
cin >> t;
while (t --> 0) {
int n;
cin >> n;
map<int, int> cnt;
vector<pair<int, int>> a;
for (int i = 1; i <= n; i++) {
int x;
cin >> x;
cnt[x] += 1;
a.push_back({x, i});
}
sort(a.begin(), a.end(), [&](pair<int, int> x, pair<int, int> y) {
if (x.fi != y.fi) return x.fi < y.fi;
return x.se > y.se;
});
vector<int> fen(n + 1);
auto upd = [&](int x, int val) {
for (; x <= n; x += x & -x) fen[x] += val;
};
auto get = [&](int x) {
int res = 0;
for (; x > 0; x -= x & -x) res += fen[x];
return res;
};
for (int i = 1; i <= n; i++) upd(i, 1);
int lst = 0, cur = 0;
vector<int> ans(n + 1);
for (int p = 0; p < n; p++) {
auto [x, i] = a[p];
if (p == 0) {
cur += (x - 1) * n;
lst = x - 1;
} else if (a[p - 1].fi != x) {
cur += (x - lst - 1) * get(n);
cur += cnt[lst + 1];
lst = x - 1;
}
ans[i] = cur + get(i);
upd(i, -1);
}
for (int i = 1; i <= n; i++) cout << ans[i] << " \n"[i == n];
}
return 0;
}
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n, m;
cin >> n >> m;
vector<vector<pair<int, int>>> g(n);
for (int i = 0; i < m; ++i) {
int u, v, c;
cin >> u >> v >> c;
--u; --v; --c;
g[u].push_back({v, c});
}
vector<int> ans(n);
vector<vector<int>> colors(n);
colors[0].push_back(-1);
colors[0].push_back(-1);
vector<int> Q;
Q.push_back(0);
while (!Q.empty()) {
int u = Q.back();
Q.pop_back();
ans[u] = true;
if (colors[u].size() == 2) {
for (auto el : g[u]) {
int v = el.first;
int c = el.second;
if (colors[v].size() == 2) {
continue;
}
if (colors[v].empty()) {
colors[v].push_back(c);
Q.push_back(v);
continue;
}
if (colors[v][0] != c) {
colors[v].push_back(c);
Q.push_back(v);
}
}
} else if (colors[u].size() == 1) {
int cur = colors[u][0];
for (auto el : g[u]) {
int v = el.first;
int c = el.second;
if (c == cur) {
continue;
}
if (colors[v].size() == 2) {
continue;
}
if (colors[v].empty()) {
colors[v].push_back(c);
Q.push_back(v);
continue;
}
if (colors[v][0] != c) {
colors[v].push_back(c);
Q.push_back(v);
}
}
}
}
for (int i = 0; i < n; ++i) {
if (ans[i]) {
cout << i + 1 << " ";
}
}
cout << "\n";
}
int32_t main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
int t;
cin >> t;
for (int _ = 0; _ < t; ++_) {
solve();
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
using pi=pair<int,int>;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while(t>0){
t--;
int n;
cin >> n;
vector<int> a(n);
for(auto &nx : a){cin >> nx;}
vector<int> b(n);
for(auto &nx : b){cin >> nx;}
vector<int> c(n);
for(auto &nx : c){cin >> nx;}
// 0 ... nothing
// 1 ... cc...caa...acc...
// 2 ... cc...caa...a
vector<vector<long long>> dp(n,vector<long long>(3,-8e18));
vector<vector<pi>> pre(n,vector<pi>(3));
dp[0][0]=b[0];
pre[0][0]={-1,1};
dp[0][1]=c[0];
pre[0][1]={-1,2};
for(int i=1;i<n;i++){
// from 0
if(dp[i][0] < dp[i-1][0]+b[i]){
dp[i][0]=dp[i-1][0]+b[i];
pre[i][0]={0,1};
}
if(dp[i][1] < dp[i-1][0]+c[i]){
dp[i][1]=dp[i-1][0]+c[i];
pre[i][1]={0,2};
}
// from 1
if(dp[i][2] < dp[i-1][1]+a[i]){
dp[i][2]=dp[i-1][1]+a[i];
pre[i][2]={1,0};
}
if(dp[i][1] < dp[i-1][1]+b[i]){
dp[i][1]=dp[i-1][1]+b[i];
pre[i][1]={1,1};
}
if(dp[i][1] < dp[i-1][1]+c[i]){
dp[i][1]=dp[i-1][1]+c[i];
pre[i][1]={1,2};
}
// from 2
if(dp[i][2] < dp[i-1][2]+a[i]){
dp[i][2]=dp[i-1][2]+a[i];
pre[i][2]={2,0};
}
if(dp[i][2] < dp[i-1][2]+b[i]){
dp[i][2]=dp[i-1][2]+b[i];
pre[i][2]={2,1};
}
if(dp[i][1] < dp[i-1][2]+c[i]){
dp[i][1]=dp[i-1][2]+c[i];
pre[i][1]={2,2};
}
}
// for(auto &nx : dp){
// for(auto &ny : nx){cout << ny << " ";}
// cout << "\n";
// }
vector<int> pt;
int tg;
if(dp[n-1][0]<dp[n-1][2]){tg=2;}else{tg=0;}
// cout << max(dp[n-1][0],dp[n-1][2]) << "\n";
vector<int> his(n);
for(int i=n-1;i>=0;i--){
his[i]=pre[i][tg].second;
tg=pre[i][tg].first;
}
vector<int> p(n);
int ofs=0;
vector<int> sft;
// for(auto &nx : his){cout << nx << " ";}cout << "\n";
his.push_back(2);
int phs=0;
for(int i=0;i<=n;i++){
if(his[i]==2){
if(phs==2){
int sz=sft.size();
for(int i=0;i<sz;i++){
p[sft[(i+ofs)%sz]]=sft[i];
}
ofs=0;
sft.clear();
}
sft.push_back(i);
ofs++;
phs=1;
}
else if(his[i]==1){p[i]=i;}
else if(his[i]==0){
if(phs==1){phs=2;}
sft.push_back(i);
}
}
long long act=0;
for(int i=0;i<n;i++){
if(p[i]<i){act+=a[i];}
else if(p[i]==i){act+=b[i];}
else{act+=c[i];}
}
// cout << act << "\n";
for(int i=0;i<n;i++){
if(i){cout << " ";}
cout << p[i]+1;
}cout << "\n";
}
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const long double PI=acosl(-1);
const int MAXN=2e5+2;
pair<long double,long double> xy[MAXN];
vector<pair<long double,bool>> sweep;
int main() {
int t;
cin >> t;
while (t--) {
int n,m;
cin >> n >> m;
long double x,y,ang,rot=2*PI/m,maxDist=0;
for (int i=1;i<=n;i++) {
cin >> x >> y;
ang=atan2l(y,x);
ang-=floorl(ang/rot)*rot;
xy[i]={sqrtl(x*x+y*y),ang};
maxDist=max(maxDist,xy[i].first);
}
long double l=maxDist,r=3*maxDist,mid;
int cnt,cnt2;
while (r-l >= 1e-10) {
cnt=0;cnt2=0;sweep.clear();
mid=(l+r)/2; // bin search on size
for (int i=1;i<=n;i++) {
if (xy[i].first <= mid*cosl(rot/2)) continue;
cnt++;
ang=rot/2-acosl(mid*cosl(rot/2)/xy[i].first);
if (xy[i].second < ang) {
sweep.push_back({rot+xy[i].second-ang,0});
sweep.push_back({ang+xy[i].second,1});
sweep.push_back({0,0});
}
else if (xy[i].second >= rot-ang) {
sweep.push_back({0,0});
sweep.push_back({ang-rot+xy[i].second,1});
sweep.push_back({xy[i].second-ang,0});
}
else {
sweep.push_back({ang+xy[i].second,1});
sweep.push_back({xy[i].second-ang,0});
}
}
sort(sweep.begin(),sweep.end());
for (auto &i : sweep) {
if (i.second) cnt2--;
else cnt2++;
if (cnt2 == cnt) break;
}
if (cnt2 != cnt) l=mid;
else r=mid;
}
cout << setprecision(10) << l << endl;
}
}