For Problem B, would the maximum $$$a_{i}$$$|$$$a_{j}$$$ = 2n-1 -> so f(n-1 , n) = n^2-n-k-2nk?
How would you solve f(i,n) > f(n-1,n) in that case?
Problem: 1554B - Cobb
Editorial : https://codeforces.me/blog/entry/93321
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
Cobb — 1554B
For Problem B, would the maximum $$$a_{i}$$$|$$$a_{j}$$$ = 2n-1 -> so f(n-1 , n) = n^2-n-k-2nk?
How would you solve f(i,n) > f(n-1,n) in that case?
Problem: 1554B - Cobb
Editorial : https://codeforces.me/blog/entry/93321
Name |
---|