Suppose a > 0, b > 0.
Find a time $$$t_0$$$ such that the function $$$f(t) = a * t - b - log(log(t))$$$ is positive(>= 0) for $$$t >= t_0$$$
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | djm03178 | 153 |
7 | adamant | 152 |
8 | luogu_official | 149 |
9 | awoo | 147 |
10 | TheScrasse | 146 |
Another Math problem
Suppose a > 0, b > 0.
Find a time $$$t_0$$$ such that the function $$$f(t) = a * t - b - log(log(t))$$$ is positive(>= 0) for $$$t >= t_0$$$
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en2 |
![]() |
__MOUGOUPAN_22 | 2023-01-27 02:06:03 | 2 | Tiny change: '- log(log(x))$ is pos' -> '- log(log(t))$ is pos' | |
en1 |
![]() |
__MOUGOUPAN_22 | 2023-01-27 01:40:19 | 151 | Initial revision (published) |
Name |
---|