My Data Structure: Bit-indexed Trie

Правка en18, от chromate00, 2022-09-01 20:25:02

This (quite sudden) post is about a data structure I have came up with in one day in bed, and this won't be a full series(I am yet a student, which means I don't have time to invent data structures all day and all night). Still, Thinking about this, I thought it would be a good idea to cover it on its own post. So here we are.


Concept

The traditional bit trie uses one leaf node for one number, and every leaf node has same depth. but about this, I thought — why? "Do we really have to use $$$32$$$ zeroes, just to represent a single zero? Heck no. There has to be a better way." And this is where I came up with this idea.

Instead of using the same old left-right child, let's use up to $$$l \leq depth$$$ children for one node. $$$l$$$ is the suffix part when each node represents a prefix. For every prefix node, we connect prefix nodes with only one $$$1$$$ bit determined after the current prefix. For example, under $$$1\text{xxxx}_2$$$, there are $$$11\text{xxx}_2$$$, $$$101\text{xx}_2$$$, and etc. Then, while the undetermined suffix (ex. the $$$\text{xxx}$$$ in $$$1\text{xxx}_2$$$) is, of course, undetermined, we can assume they are $$$0$$$ for the exact node the prefix exists on. Then we can use the prefix node $$$1\text{xxxx}_2$$$ for $$$10000_2$$$ also.


The Important Detail

At this moment, you should be wondering, how do we distinguish the node for the number $$$10000_2$$$ and the prefix $$$1\text{xxxx}_2$$$? They use the same node after all. My conclusion? You don't need to. To do this, you can just save the size (amount of elements) of the subtree. Now, let us denote the size of the subtree of prefix $$$S$$$ as $$$n(S)$$$. then $$$n(1\text{xxxx}_2) = n(11\text{xxx}_2) + n(101\text{xx}_2) + \ldots + n(10000_2)$$$ applies. So you can just traverse the child nodes one by one, and the rest is the number itself.


Traversing the Bit-indexed Trie

Using the "important detail" stated above, traversing the Bit-indexed Trie boils down to simply interpreting it like a binary tree. We start at the root, which is $$$0$$$, and we can interpret this node as $$$0\text{xxxxx}_2$$$. This root node may (or may not) have $$$01\text{xxxx}_2$$$ as a child node. Important point here is to keep a variable for the size of the "virtual" subtree of the current node. (we will denote this as $$$c$$$.) If the subtree size of the current node ($$$0\text{xxxxx}_2$$$) is $$$s$$$ and that of the right child node ($$$01\text{xxxx}_2$$$) is $$$s_1$$$, then the subtree size of the left child node, when interpreted as a binary trie, should be $$$s-s_1$$$. So if we want to traverse towards the right child node, do so, and update $$$c$$$ to $$$s_1$$$. On the other hand, if we want to traverse towards the left child node, stay on the current node, assume that we did move ($$$0\text{xxxxx}_2$$$ yet shares the node with $$$00\text{xxxx}_2$$$), and update $$$c$$$ to $$$c-s_1$$$. After understanding this, almost everything goes same with the usual trie.

visualization

Теги trie, bitmask

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en30 Английский chromate00 2022-09-02 04:37:46 7 Tiny change: '(1)$, and he is correct. ' -> '(1)$, and they are correct. '
en29 Английский chromate00 2022-09-02 04:37:10 25 Tiny change: '9-02] and told me t' -> '9-02] and [user:Keewrem] told me t' (published)
en28 Английский chromate00 2022-09-02 04:36:38 5 Tiny change: '22-09-02] told me t' -> '22-09-02] and told me t' (saved to drafts)
en27 Английский chromate00 2022-09-02 03:33:02 0 (published)
en26 Английский chromate00 2022-09-02 03:32:43 208 (saved to drafts)
en25 Английский chromate00 2022-09-01 21:14:22 0 (published)
en24 Английский chromate00 2022-09-01 21:13:53 438
en23 Английский chromate00 2022-09-01 21:06:50 24 Tiny change: 'functions.' -> 'functions.\n\n-----\n\n### Summary'
en22 Английский chromate00 2022-09-01 21:05:33 375
en21 Английский chromate00 2022-09-01 20:59:10 2 Tiny change: ' BI-Trie">\n~~~~~\nvoi' -> ' BI-Trie">~~~~~\nvoi'
en20 Английский chromate00 2022-09-01 20:58:45 314
en19 Английский chromate00 2022-09-01 20:48:47 969
en18 Английский chromate00 2022-09-01 20:25:02 75
en17 Английский chromate00 2022-09-01 20:24:25 74
en16 Английский chromate00 2022-09-01 20:08:47 1082 Tiny change: '_2$. This toot node m' -> '_2$. This root node m'
en15 Английский chromate00 2022-09-01 19:07:28 198
en14 Английский chromate00 2022-09-01 19:04:59 69
en13 Английский chromate00 2022-09-01 19:02:49 452
en12 Английский chromate00 2022-09-01 18:53:40 134 Tiny change: '{xx}_2) + n(1001\text{x}_2) + n(10001_2) + n(10000' -> '{xx}_2) + \ldots + n(10000'
en11 Английский chromate00 2022-09-01 18:51:08 1 Tiny change: 'n(10000_2).' -> 'n(10000_2)$.'
en10 Английский chromate00 2022-09-01 18:50:59 279
en9 Английский chromate00 2022-09-01 18:45:29 38 Tiny change: '{xxxx}_2$?\n\n' -> '{xxxx}_2$? They use the same node after all.'
en8 Английский chromate00 2022-09-01 18:44:59 174
en7 Английский chromate00 2022-09-01 10:26:56 2 Tiny change: 'last $1$ (MSB), it me' -> 'last $1$ (LSB), it me'
en6 Английский chromate00 2022-09-01 10:26:17 120
en5 Английский chromate00 2022-09-01 10:23:13 14 Tiny change: 'se up to $32-l$ children' -> 'se up to $l \leq depth$ children'
en4 Английский chromate00 2022-09-01 10:22:12 533
en3 Английский chromate00 2022-09-01 07:41:44 307
en2 Английский chromate00 2022-09-01 03:11:46 123
en1 Английский chromate00 2022-09-01 01:52:09 427 Initial revision (saved to drafts)