E. Prefix GCD
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Since Mansur is tired of making legends, there will be no legends for this task.

You are given an array of positive integer numbers $$$a_1, a_2, \ldots, a_n$$$. The elements of the array can be rearranged in any order. You need to find the smallest possible value of the expression $$$$$$\gcd(a_1) + \gcd(a_1, a_2) + \ldots + \gcd(a_1, a_2, \ldots, a_n),$$$$$$ where $$$\gcd(a_1, a_2, \ldots, a_n)$$$ denotes the greatest common divisor (GCD) of $$$a_1, a_2, \ldots, a_n$$$.

Input

Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). The description of the test cases follows.

The first line of each test case contains a single number $$$n$$$ ($$$1 \le n \le 10^5$$$) — the size of the array.

The second line of each test case contains $$$n$$$ numbers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$) — the initial array.

The sum of $$$n$$$ over all test cases does not exceed $$$10^5$$$.

The sum of $$$\max(a_1, a_2, \ldots, a_n)$$$ over all test cases does not exceed $$$10^5$$$.

Output

For each test case, output a single number on a separate line — the answer to the problem.

Example
Input
5
3
4 2 2
2
6 3
3
10 15 6
5
6 42 12 52 20
4
42 154 231 66
Output
6
6
9
14
51
Note

In the first test case, the elements can be rearranged as follows: $$$[2, 4, 2]$$$. Then the answer will be $$$\gcd(2) + \gcd(2, 4) + \gcd(2, 4, 2) = 2 + 2 + 2 = 6$$$.

In the third test case, the elements can be rearranged as follows: $$$[6, 10, 15]$$$. Then the answer will be $$$\gcd(6) + \gcd(6, 10) + \gcd(6, 10, 15) = 6 + 2 + 1 = 9$$$.