You are given a matrix $$$a$$$, consisting of $$$n$$$ rows by $$$m$$$ columns. Each element of the matrix is equal to $$$0$$$ or $$$1$$$.
You can perform the following operation any number of times (possibly zero): choose an element of the matrix and replace it with either $$$0$$$ or $$$1$$$.
You are also given two arrays $$$A$$$ and $$$B$$$ (of length $$$n$$$ and $$$m$$$ respectively). After you perform the operations, the matrix should satisfy the following conditions:
Calculate the minimum number of operations you have to perform.
The first line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \le n, m \le 50$$$).
Then $$$n$$$ lines follow. The $$$i$$$-th of them contains $$$m$$$ integers $$$a_{i,1}, a_{i,2}, \dots, a_{i,m}$$$ ($$$0 \le a_{i,j} \le 1$$$).
The next line contains $$$n$$$ integers $$$A_1, A_2, \dots, A_n$$$ ($$$0\le A_i\le m$$$).
The next line contains $$$m$$$ integers $$$B_1, B_2, \dots, B_m$$$ ($$$0\le B_i\le n$$$).
Print one integer — the minimum number of operations you have to perform, or -1 if it is impossible.
3 30 0 00 0 00 0 01 1 11 1 1
3
3 31 1 11 1 11 1 13 2 11 2 3
3
2 20 00 01 20 1
-1
Name |
---|