F. Kirei and the Linear Function
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Given the string $$$s$$$ of decimal digits (0-9) of length $$$n$$$.

A substring is a sequence of consecutive characters of a string. The substring of this string is defined by a pair of indexes — with its left and right ends. So, each pair of indexes ($$$l, r$$$), where $$$1 \le l \le r \le n$$$, corresponds to a substring of the string $$$s$$$. We will define as $$$v(l,r)$$$ the numeric value of the corresponding substring (leading zeros are allowed in it).

For example, if $$$n=7$$$, $$$s=$$$"1003004", then $$$v(1,3)=100$$$, $$$v(2,3)=0$$$ and $$$v(2,7)=3004$$$.

You are given $$$n$$$, $$$s$$$ and an integer $$$w$$$ ($$$1 \le w < n$$$).

You need to process $$$m$$$ queries, each of which is characterized by $$$3$$$ numbers $$$l_i, r_i, k_i$$$ ($$$1 \le l_i \le r_i \le n; 0 \le k_i \le 8$$$).

The answer to the $$$i$$$th query is such a pair of substrings of length $$$w$$$ that if we denote them as $$$(L_1, L_1+w-1)$$$ and $$$(L_2, L_2+w-1)$$$, then:

  • $$$L_1 \ne L_2$$$, that is, the substrings are different;
  • the remainder of dividing a number $$$v(L_1, L_1+w-1) \cdot v(l_i, r_i) + v(L_2, L_2 + w - 1)$$$ by $$$9$$$ is equal to $$$k_i$$$.

If there are many matching substring pairs, then find a pair where $$$L_1$$$ is as small as possible. If there are many matching pairs in this case, then minimize $$$L_2$$$.

Note that the answer may not exist.

Input

The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — number of input test cases.

The first line of each test case contains a string $$$s$$$, which contains only the characters 0-9 and has a length $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$).

The second line contains two integers $$$w, m$$$ ($$$1 \le w < n, 1 \le m \le 2 \cdot 10^5$$$), where $$$n$$$ — is the length of the given string $$$s$$$. The number $$$w$$$ denotes the lengths of the substrings being searched for, and $$$m$$$ is the number of queries to be processed.

The following $$$m$$$ lines contain integers $$$l_i, r_i, k_i$$$ ($$$1 \le l_i \le r_i \le n$$$, $$$0 \le k_i \le 8$$$) — $$$i$$$th query parameters.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. It is also guaranteed that the sum of $$$m$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.

Output

For each request, print in a separate line:

  • left borders of the required substrings: $$$L_1$$$ and $$$L_2$$$;
  • -1 -1 otherwise, if there is no solution.

If there are several solutions, minimize $$$L_1$$$ first, and minimize $$$L_2$$$ second.

Example
Input
5
1003004
4 1
1 2 1
179572007
4 2
2 7 3
2 7 4
111
2 1
2 2 6
0000
1 2
1 4 0
1 4 1
484
1 5
2 2 0
2 3 7
1 2 5
3 3 8
2 2 6
Output
2 4
1 5
1 2
-1 -1
1 2
-1 -1
1 3
1 3
-1 -1
-1 -1
-1 -1
Note

Consider the first test case of example inputs. In this test case $$$n=7$$$, $$$s=$$$"1003004", $$$w=4$$$ and one query $$$l_1=1$$$, $$$r_1=2$$$, $$$k_1=1$$$. Note that $$$v(1,2)=10$$$. We need to find a pair of substrings of length $$$4$$$ such that $$$v(L_1, L_1+3)\cdot10+v(L_2,L_2+3)$$$ has a remainder of $$$k_1=1$$$ when divided by $$$9$$$. The values $$$L_1=2, L_2=4$$$ actually satisfy all the requirements: $$$v(L_1, L_1+w-1)=v(2,5)=30$$$, $$$v(L_2, L_2+w-1)=v(4,7)=3004$$$. Indeed, $$$30\cdot10+3004=3304$$$, which has a remainder of $$$1$$$ when divided by $$$9$$$. It can be shown that $$$L_1=2$$$ is the minimum possible value, and $$$L_2=4$$$ is the minimum possible with $$$L_1=2$$$.