Блог пользователя saelcc03

Автор saelcc03, история, 4 недели назад, По-английски

Contest: Link

A. No More Ties!

Tutorial
Pseudocode

B. Dividing

Tutorial
Pseudocode

C. Games with Queta

Tutorial
Pseudocode

D. Coins 3

Tutorial
Pseudocode

E. Separated Cells

Tutorial
Pseudocode

F. Painting Squares

Tutorial
Pseudocode
PSDT


I hope you found it useful ^-^

Полный текст и комментарии »

  • Проголосовать: нравится
  • +6
  • Проголосовать: не нравится

Автор saelcc03, история, 2 месяца назад, По-английски

HI WORLD

I love cp algorithms articles but sometimes there are some proofnesses that I can't figure out by myself. I've just checked the proofness of transition of coefficients in extended euclidian algorithm and I'd like to share my explanation here.

Given $$$a$$$ and $$$b$$$, we need to calculate $$$x$$$ and $$$y$$$ such that satisfies Bézout's identity: $$$ax + by = gcd(a,b)$$$.

Starting with values $$$x=1$$$, $$$y=0$$$, $$$x_1=0$$$, $$$y_1=1$$$, $$$a_1=a$$$, $$$b_1=b$$$, after some iterations $$$b_1$$$ will become $$$0$$$ and $$$a_1$$$ will become $$$gcd(a,b)$$$:

// by cp algorithms
int gcd(int a, int b, int& x, int& y) {
    x = 1, y = 0;
    int x1 = 0, y1 = 1, a1 = a, b1 = b;
    while (b1) {
        int q = a1 / b1;
        tie(x, x1) = make_tuple(x1, x - q * x1);
        tie(y, y1) = make_tuple(y1, y - q * y1);
        tie(a1, b1) = make_tuple(b1, a1 - q * b1);
    }
    return a1;
}

We have these transitions:

$$$\begin{cases}x = x_1\\x_1 = x - x_1q\end{cases}$$$

$$$-$$$

$$$\begin{cases}y = y_1\\y_1 = y - y_1q\end{cases}$$$

$$$-$$$

$$$\begin{cases}a_1 = b_1\\b_1 = a_1 - b_1q\end{cases}$$$

The third transition is very clear. It's explained in the previous chapter about the normal Euclidean algorithm. But what is the reason that the first two transitions are correct as well?

At the beginnig we have these equalities:

  • $$$ax + by = a_1$$$
  • $$$ax_1 + by_1 = b_1$$$

On the following transition we'll have:

  • $$$ax_1 + by_1 = b_1$$$
  • $$$ax_2 + by_2 = a_1\%b_1 = a_1 - (a_1/b_1)*b_1 = a_1 - qb_1$$$

Replacing values of $$$a_1$$$ and $$$b_1$$$ on last equation we have:

$$$ax_2 + by_2 = a_1 - qb_1 = ax + by - q*(ax_1+by_1)$$$

Rearranging:

$$$ax_2 + by_2 = a*(x-x_1q) - b*(y-y1*q)$$$

By comparinson we have:

  • $$$x_2 = x - x_1q$$$
  • $$$y_2 = y - y_1q$$$

$$$x_2$$$ and $$$y_2$$$ are just the next values of x1 and y1. So we have checked the proofness of transition of coefficients of extended euclidean algorithm, iterative version.

Any observations will be really helpful. Thanks for reading ^-^

Полный текст и комментарии »

  • Проголосовать: нравится
  • +24
  • Проголосовать: не нравится