Блог пользователя Makise_Kurisu

Автор Makise_Kurisu, 4 года назад, По-английски

Hello friends, I was trying to solve this dynamic programming problem. The editorial proposes an $$$\mathcal{O}(N^4)$$$ solution to this problem, but I think it could be solved in $$$\mathcal{O}(N^3)$$$ time according to the following approach:

$$$ DP[i][j] \rightarrow \text{Max score we can get from subarray }A[i \dots j] $$$

Say, $$$i \le e_k \le j \rightarrow$$$ kth occurence of $$$A[i]$$$ between $$$i$$$ and $$$j$$$, $$$K \rightarrow$$$ number of occurrences of $$$A[i]$$$ in $$$[i\dots j]$$$ . Transitions are as follows.

$$$ \displaystyle DP[i][j]=\max(DP[i+1][j],\sum_{k=1}^{K-1} DP[e_k+1][e_{k+1}-1]+K^2) $$$

Unfortunately, this approach gives WA. I'd be grateful if anyone could share an $$$\mathcal{O}(N^3)$$$ or an intuitively more convincing $$$\mathcal{O}(N^4)$$$ solution as I was not able to follow the editorial completely.

  • Проголосовать: нравится
  • +16
  • Проголосовать: не нравится

»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I thought you can only pick consecutive plates, i.e. those that form a subarray. how does $$$kth$$$ occurence of $$$A[i]$$$ work in that case.

  • »
    »
    4 года назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    Yes say the subarray looks like this
    A....A.......A...A Now if we want to take all the A's together in one shot then we'll first have to make them consecutive as you said, so we first remove all the elements which occur between any 2 occurences and then take all K occurences together

»
4 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

It can be solved in $$$O(n^3)$$$. Here is a good editorial