Блог пользователя piyushpandey

Автор piyushpandey, история, 3 года назад, По-английски

Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)Problem C Problem Link

I read the editorial it used brute force approach

Is it possible to do this question using math? (without checking for 10^4 possible passwords)

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Yes you can solve this problem with combinatorics.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

If the pins were of unique elements, you would solve it with basic combinatorics. But since that's not the case, you should still iterate over the elements to subtract those overlaps, considering many cases.

Still, that's my opinion, I am very interested if some, not complicated formula exists for this.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

you can use combinatorics:

  • if an element is fixed ('o') you can use polynomial: $$$exp(x) - 1 = \frac{x}{1!} + \frac{x^2}{2!} + ... $$$

  • in other case ('?'): $$$exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + ... $$$

The answer consists first of multiplying all these polynomials and answering the coefficient 4 multiplied by 4!

Using the fact that $$$exp(x) ^ c = exp(c * x)$$$ you have 6 cases for each number of characters 'o'.

code

answer $$$= \sum\limits_{i=0}^b (-1)^i \binom{b}{i} (a + b - i)^4$$$

where a = #'?' and b = #'o'.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    In general you need to calculate the coefficients of $$$(x - 1)^k$$$, which can be achieved in $$$O(k)$$$.