Given an array with N elements and a number P (P ≤ N). Pick randomly P elements from the array, let's call T the product of these elements. Find the largest x that T % 10^x = 0
Example:
Input
3 2
26 5 96
Output
1
Input
3 2
25 4 90
Output
2
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | Qingyu | 155 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Given an array with N elements and a number P (P ≤ N). Pick randomly P elements from the array, let's call T the product of these elements. Find the largest x that T % 10^x = 0
Example:
Input
3 2
26 5 96
Output
1
Input
3 2
25 4 90
Output
2
Название |
---|
Sorry if i have some mistakes, i know english not well.
So. Main condition (T % 10^x == 0) Makes it clear that we need only 5 and 2 in decomposition of a number. We can write dp[i][j][k]. where i — how many 2 are in the decomposition of our K number, which we are choose and j — how many 5 in our decomposition. i, j are <= log5(maxA[i]) * n. And k <= n.
O(n^3 * log5(maxA[i])^2) I think it possible to solve better
https://codeforces.me/contest/837/problem/D
This is almost exactly the same problem but here you're restricted to choosing a subset of size k.