question suggest some approach and reason behind it
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Name |
---|
Prove that it is always optimal to swap any element into its final position.
Think of the array as a permutation, and consider cycles in the permutation. Define $$$f(A)$$$ as the sum of one minus the size of each cycle, where fixed points (elements in their final positions) are not counted. The $$$f$$$ value of a sorted array is $$$0$$$. Prove that any swap decreases $$$f$$$ by at most $$$1$$$, and there's always an operation that decreases $$$f$$$ by $$$1$$$.
How can you use knowledge of graph theory to easily determine how many swaps it takes to sort each group of elements?
Stop posting blogs for questions which're already google-able