HOW TO SOLVE THE INEQUALITY i*(i + 1) <= n such that i is maximum possible in O(1) time complexity.is their exist any method.
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
HOW TO SOLVE THE INEQUALITY i*(i + 1) <= n such that i is maximum possible in O(1) time complexity.is their exist any method.
Name |
---|
This is the one I can think of. Solve $$$i^{2}+i-n=0$$$
So just take floor(sol) from the previous equation.
The problem is that solution involves computing square root which is not O(1).
yeah that is the problem, i can find it in sqrt complexity but i guess constant complexity is not possible
Computing the square root of a number is actually very close close to O(1) !
I don't know the complexity exactly but it is described here : https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations