Given n<=1000000 and k<=n*(n-1)/2 construct a sequence of length n that has exactly k inversions. How do I solve this? Thanks!
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Given n<=1000000 and k<=n*(n-1)/2 construct a sequence of length n that has exactly k inversions. How do I solve this? Thanks!
Название |
---|
Every number $$$1 \le i \le n$$$ can add maximum $$$n - i$$$ inversions. So we can run from $$$1$$$ to $$$n$$$ and if $$$cnt_{inversion} + (n - i) \le k$$$ then place $$$i$$$ on maximum right unused position and doing $$$cnt_{inversion} += (n - i)$$$. Else place $$$i$$$ on minimal left unused position and $$$cnt_{inversion}$$$ was not changed.
https://ideone.com/kXZNIe