Here is the statement of problem B from the most recent contest (#571) for those who missed it. 571 — B
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Name |
---|
What was the test case 3? I did (a+1) (b+1) /6.
If I'm not mistaken it likely was
4 4
or something like that.Your code would correctly produce
4
for that.However the expected answer according to the problem author's code would have been
3
which is clearly wrong as the following arrangement exists :Hi sir Can you please explain how you achieved that formula? Thank you.
In every 2x3 you can put one . so how many 2x3 blocks we have in our grid?
Thank you for the reply sir. perhaps I am not understanding correctly, but maximum you can put in a 2x3 is actually 2, and when you have an perfect number of 2x3s your can actually fit more (example is 4x6).
http://codeforces.me/blog/entry/68048 Read Comment