How many different trees can be formed with N nodes?? I read somewhere it is N ^ (N — 2), But doesn't find any proof? May anyone elaborate how it is N ^ (N — 2).
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | Qingyu | 152 |
6 | djm03178 | 152 |
6 | adamant | 152 |
9 | luogu_official | 149 |
10 | awoo | 147 |
How many different trees can be formed with N nodes?? I read somewhere it is N ^ (N — 2), But doesn't find any proof? May anyone elaborate how it is N ^ (N — 2).
Name |
---|
http://www-math.mit.edu/~djk/18.310/18.310F04/counting_trees.html
Is this formula is approximation??
This problem solution "number of spanning trees in labeled complete graph is $$$n^{n-2}$$$", is called Cayley's Formula, which is famous in graph theory field.
There is a famous proof by Heinz Prüfer (1918) which uses Prüfer Code. But we can able to count number of spanning trees in any undirected simple graph $$$G$$$ via determinant of matrix. This way is called Kirchhoff's Theorem.