Problem- link
Please anybody explain the soln.
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 151 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Problem- link
Please anybody explain the soln.
Name |
---|
see Ashishgup solution . dp cant be more neat than his solution
I saw but unable to understand this single line means why everyone is using suffix array even if we are processing from left to right :(
ans = max(dp(i + 1), a[i] + suf[i + 1] — dp(i + 1));
My logic was:
DP(i) stores the maximum value a particular player can get if he starts at the ith index and goes till the end of the array.
One possibility is, I retain my turn and skip the element, thus going to dp(i+1).
Other possibility is, I take the ith element (and get a score of a[i]) and lose my turn. If I lose my turn, then the score I get is:
sum of remaining elements — the maximum score that the other player can get if he starts at index i + 1.
That is, suf[i+1] — dp(i+1).
Hence the line: ans = max(dp(i + 1), a[i] + suf[i + 1] — dp(i + 1)).