I'd be happy if someone explained the solutions of E and J.
http://acm.math.spbu.ru:17249/~ejudge/files/opencup/oc12/gp6/gpce-e.pdf
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | Qingyu | 155 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
I'd be happy if someone explained the solutions of E and J.
http://acm.math.spbu.ru:17249/~ejudge/files/opencup/oc12/gp6/gpce-e.pdf
Name |
---|
Problem E.
Let
calc(i, j)
be the maximum coverage length of a special symboli
in the patternP
starting fromP[j]
. Then for each equation of the form A = B + C,calc(A, j) = calc(B, j) + calc(C, j + calc(B, j))
, and for equation A = a word over * {a, ..., z} we count it the simple way.To speed up, use a hash table (unordered_map) to memorize
calc(i, j)
values.The solution is then
calc(S, 0) == strlen(P)
.