Need help in this problem. What is the formula? Thanks in Advance.
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Need help in this problem. What is the formula? Thanks in Advance.
Name |
---|
The problem is simple, It requires to know the concept of median. Well the approach is: We sort all the positions. Then We Can say that the fucka point lies in the range of middle two elements.
Now the probabilty(ans) is : (length of the segment between two mid points)/m
ie after sorting ans is: (a[n/2]-a[(n-1)/2])/m;
The proof is easy to realise by writing the expression for distance and see that median always satisfy the condition.