Please tell the complexity of http://www.geeksforgeeks.org/maximum-bipartite-matching/ ?
And if we use directly Ford-Fulkerson Algorithm, will it be better?
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Please tell the complexity of http://www.geeksforgeeks.org/maximum-bipartite-matching/ ?
And if we use directly Ford-Fulkerson Algorithm, will it be better?
Name |
---|
Maximum Bipartite Matching with Ford-Fulkerson takes O(VE) time. Using Dinic instead of Ford-Fulkerson (or Edmonds Karp for that matter; note that Edmonds Karp always find the shortest augmenting path instead of finding a random path), you can achieve a complexity of .
Can you plz explain the complexity of the link I provided?
Secondly when and how Ford-Fulkerson Algorithm becomes better?
In the link, the bipartite matching is done using Ford-Fulkerson, so the complexity is O(VE).
I don't understand your second question.
A very good source to learn Max-Flow is CLRS. There's an entire chapter dedicated to network flows. You should read it.