How would I check the divisibility of two numbers which are both taken under modulo M?
E.g I have calculated a very large sum modulo M and now I want to check if this sum is evenly divisible by a^b where a and b can be as large as 10^9.
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
How would I check the divisibility of two numbers which are both taken under modulo M?
E.g I have calculated a very large sum modulo M and now I want to check if this sum is evenly divisible by a^b where a and b can be as large as 10^9.
Name |
---|
The only way I can spot is to calculate the sum modulo M * a ^ b (hope is not too big), and then check if the result is divisible by a ^ b.
Why not calculate the sum just modulo a^b and check if it's zero?
You can't take them modulo and then check for divisibility, for ex. the numbers 8 and 3 are equal modulo 5, but 3 doesn't divide 8. On the other hand, 128 and 8 give remainders 3 modulo 5, and 8 divides 128. As per this example, you have no way to check whether two numbers(taken modulo) divide each other(examples can be found for every number)