Can anyone tell me how to solve this problem?
http://codeforces.me/contest/177/problem/G2
Thanks in advance!
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | Qingyu | 155 |
7 | djm03178 | 152 |
7 | adamant | 152 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Can anyone tell me how to solve this problem?
http://codeforces.me/contest/177/problem/G2
Thanks in advance!
Name |
---|
This is enhanced version of one problem in ICPC WF 2012: https://icpc.kattis.com/problems/fibonacci
Short editorial for WF 2012: http://www.csc.kth.se/~austrin/icpc/finals2012solutions.pdf
I "guess" matrix exponentiation will do the trick for enhanced version (unproven for now, I didn't have time to analyse further).
Let's calculate for each prefix s[1..i] the minimum fibonacci index minind[i] such that s[1..i] is a suffix of fib[i] and s[i + 1..n] is a prefix of fib[i + 1].
Because the relation
can be written equivalently as:
it follows that $min_ind[i]$ is either ∞ or less than n (because fib[i] has all the prefixes of fib[i - 2]). After that, it is essentially a linear reccurence of type
for all $\i \geq n$ (or n + 2 or smth.).
You basically have to compute DP[n] and DP[n + 1] and occurences_less_than_inf, and then do matrix exp. I think that should work :).