I'm having a little trouble proving the following:
If
then
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | djm03178 | 153 |
7 | adamant | 152 |
8 | luogu_official | 149 |
9 | awoo | 147 |
10 | TheScrasse | 146 |
I'm having a little trouble proving the following:
If
then
Название |
---|
Here's what I came up with:
So we want to show that
.
The left hand side obviously simplifies to d.
On the right hand side we get:
. The c·m·b vanishes, because of the modulo. And since d < m, d·b mod (m·b) = d·b. So it simplifies to
too, which completes the proof.
Hope that helps :)