Can anyone tell actually what's the behind that problem.I proved many individual cases but didn't find any formula or pattern, except for the numbers given by n(n+1)/2.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3821 |
3 | Benq | 3736 |
4 | Radewoosh | 3631 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3388 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
slycelote
|
15 лет назад,
#
|
0
It's quite easy to prove by induction that the set of points accessible after n jumps is {-n(n+1)/2, -n(n+1)/2 + 2, ... , n*(n+1)/2-2, n*(n+1)/2}. Just move this set by (n+1) and -(n+1) and see what happens.
→
Ответить
|
Название |
---|