Hi there!
Tomorrow at 04:00 MSK will be held Topcoder SRM 672.
Let's discuss problems there, after contest.
UPD: Editorial
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3821 |
3 | Benq | 3736 |
4 | Radewoosh | 3631 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3388 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
Hi there!
Tomorrow at 04:00 MSK will be held Topcoder SRM 672.
Let's discuss problems there, after contest.
UPD: Editorial
Name |
---|
Registration is open. GO!
For more than half an hour I tried to count connected almost Eulearian graphs in Div1-500 =( Didn't realize this is not a condition we need.
Upd: oops, that's pretty non-sense. Now I even can't myself understand what I was counting.
Are there any non-connected almost Eulerian graphs?
Initially I was counting connected graphs with at most 2 vertices having odd degree (*). After this solution failed on samples I realized that in addition to almost Eulerian graphs I also counted graphs with 1 bridge which fall into 2 Eulerian graphs after removal of this bridge. Luckily, it's possible to count AE graphs just from knowing (*) for all N. Maybe you made the same mistake as me initially?
UPD: initial version of the comment was wrong
How to solve Div.1 500?
Editorial link: http://codeforces.me/blog/entry/21112