How to solve for(M,N) it the equation of the form M*c1+c2=N*c3+c4, using Extended euclidean algo. Here c1,c2,c3,c4 are known constants.
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
How to solve for(M,N) it the equation of the form M*c1+c2=N*c3+c4, using Extended euclidean algo. Here c1,c2,c3,c4 are known constants.
Name |
---|
Convert to c1M + c3( - N) = c4 - c2. This is now in the form ax + by = c, solving for x, y, which can be done using Extended Euclidean algorithm.
Thanks, can you please share a useful link? :)
Got it, it is a Diophantine equation, Thanks again :)
I bet it is for yesterday's contest ;)
See tags for the question
I didn't see it :)