You Have Number N initialy equal to 1 , and there is 2 operations : 1) 1 x : multiple n by , n=n*x 2) 2 x : check if n%(x!)=0 , n mod (factorial x) = 0
Query up to 1e5 , x up to 1e6
Any hint ?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 159 |
5 | atcoder_official | 156 |
6 | djm03178 | 153 |
6 | adamant | 153 |
8 | luogu_official | 149 |
8 | awoo | 149 |
10 | TheScrasse | 146 |
You Have Number N initialy equal to 1 , and there is 2 operations : 1) 1 x : multiple n by , n=n*x 2) 2 x : check if n%(x!)=0 , n mod (factorial x) = 0
Query up to 1e5 , x up to 1e6
Any hint ?
Название |
---|
You can get all the primes till 1e6 using seive then you can set a variable M=1 which tells the maximum value of M for which n is divisible by M!, for a query of type 1 x add the prime factorization of x in the residual product array which stores the powers of primes at the indexes now run a while loop checking if product array is divisible by M+1 if so, increment M by 1 and remove the prime factorization from the array. For query of type 2 x simply give yes if M>=x else no. Expected time complexity O((Q)log(1e6))