How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 160 |
4 | atcoder_official | 159 |
4 | Um_nik | 159 |
6 | djm03178 | 156 |
7 | adamant | 153 |
8 | luogu_official | 149 |
8 | awoo | 149 |
10 | TheScrasse | 146 |
How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
Name |
---|
In O: let's assume M_i,i = 1, and a_i = M_i, i+1. then the terms on the kth diagonal are (a_i ... a_i+k) / k!
Knowing this, if we look at a specific prime power p, the condition for M_xy is equivalent to a condition on the total number of times p divides a_x..a_y. We can solve it using negative-weight shortest-path finding in a graph.
orz