1786A2 - Alternating Deck (hard version)
Problem author: KAN
Explanation
Tutorial is loading...
Code by KAN
NT = int(input())
for T in range(NT):
n = int(input())
answer = [0, 0, 0, 0]
first_card = 1
for it in range(1, 20000):
who = 0 if it % 4 == 1 or it % 4 == 0 else 1
cnt = it
if n < cnt:
cnt = n
cnt_white = (cnt + first_card % 2) // 2
cnt_black = cnt - cnt_white
answer[who * 2 + 0] += cnt_white
answer[who * 2 + 1] += cnt_black
first_card += cnt
n -= cnt
if n == 0:
break
assert(n == 0)
print(*answer)
Problem author: KAN
Explanation
Tutorial is loading...
Code by KAN
#include <bits/stdc++.h>
using namespace std;
const int inf = 1000000000;
int main() {
int tt;
cin >> tt;
while (tt--) {
int n, w, h;
cin >> n >> w >> h;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<int> b(n);
for (int i = 0; i < n; i++) {
cin >> b[i];
}
int minshift = -inf;
int maxshift = inf;
for (int i = 0; i < n; i++) {
minshift = max(minshift, (b[i] + h) - (a[i] + w));
maxshift = min(maxshift, (b[i] - h) - (a[i] - w));
}
if (minshift <= maxshift) {
cout << "YES" << '\n';
} else {
cout << "NO" << '\n';
}
}
return 0;
}
1785A - Monsters (easy version)
Problem author: tourist
Explanation
Tutorial is loading...
Code by tourist
#include <bits/stdc++.h>
using namespace std;
int main() {
int tt;
cin >> tt;
while (tt--) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sort(a.begin(), a.end());
vector<int> b(n);
b[0] = 1;
for (int i = 1; i < n; i++) {
b[i] = min(b[i - 1] + 1, a[i]);
}
long long ans = 0;
for (int i = 0; i < n; i++) {
ans += a[i] - b[i];
}
cout << ans << '\n';
}
return 0;
}
Problem author: tourist
Explanation
Tutorial is loading...
Code by PavelKunyavskiy
private fun IntArray.countOf(value: Int) = count { it == value }
private fun solve() {
val s = "win"
fun IntArray.bad() = (0 until 3).singleOrNull { c -> count { it == c } > 1 }
val data = List(readInt()) { readLn().map { s.indexOf(it) }.toIntArray() }
val ans = mutableListOf<String>()
fun exchange(c1: Int, c2: Int, i1: Int, i2: Int) {
ans.add("$$${i1+1} $$${s[c1]} $$${i2+1} $$${s[c2]}")
val index1 = data[i1].indexOf(c1)
val index2 = data[i2].indexOf(c2)
data[i1][index1] = c2
data[i2][index2] = c1
}
val todo = List(3) { List(3) { mutableListOf<Int> () } }
for (i in data.indices) {
val bad = data[i].bad() ?: continue
for (j in 0 until 3) {
if (data[i].countOf(j) == 0) {
todo[bad][j].add(i)
}
}
}
for (i in 0 until 3) {
for (j in 0 until 3) {
if (i != j) {
while (todo[i][j].isNotEmpty() && todo[j][i].isNotEmpty()) {
exchange(i, j, todo[i][j].removeLast(), todo[j][i].removeLast())
}
}
}
}
while (todo[0][1].isNotEmpty() && todo[1][2].isNotEmpty() && todo[2][0].isNotEmpty()) {
val a = todo[0][1].removeLast()
val b = todo[1][2].removeLast()
val c = todo[2][0].removeLast()
exchange(0, 1, a, b)
exchange(0, 2, b, c)
}
while (todo[1][0].isNotEmpty() && todo[2][1].isNotEmpty() && todo[0][2].isNotEmpty()) {
val a = todo[1][0].removeLast()
val b = todo[2][1].removeLast()
val c = todo[0][2].removeLast()
exchange(1, 0, a, c)
exchange(2, 1, b, c)
}
println(ans.size)
println(ans.joinToString("\n"))
}
fun main() {
repeat(readInt()) {
solve()
}
}
private fun readLn() = readLine()!!
private fun readInt() = readLn().toInt()
1785C - Monsters (hard version)
Problem author: tourist
Explanation
Tutorial is loading...
Code by tourist
#include <bits/stdc++.h>
using namespace std;
int main() {
int tt;
cin >> tt;
while (tt--) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<int> mn(2 * n - 1);
vector<int> add(2 * n - 1, 0);
vector<int> pos(2 * n - 1);
auto Pull = [&](int x, int z) {
mn[x] = min(mn[x + 1], mn[z]) + add[x];
pos[x] = (mn[x + 1] <= mn[z] ? pos[x + 1] : pos[z]);
};
function<void(int, int, int, int, int, int)> Modify = [&](int x, int l, int r, int ll, int rr, int v) {
if (ll <= l && r <= rr) {
mn[x] += v;
add[x] += v;
return;
}
int y = (l + r) >> 1;
int z = x + 2 * (y - l + 1);
if (ll <= y) {
Modify(x + 1, l, y, ll, rr, v);
}
if (rr > y) {
Modify(z, y + 1, r, ll, rr, v);
}
Pull(x, z);
};
function<void(int, int, int)> Build = [&](int x, int l, int r) {
if (l == r) {
mn[x] = l;
pos[x] = l;
return;
}
int y = (l + r) >> 1;
int z = x + 2 * (y - l + 1);
Build(x + 1, l, y);
Build(z, y + 1, r);
Pull(x, z);
};
Build(0, 1, n);
long long s = 0;
long long m = 0;
for (int i = 0; i < n; i++) {
s += a[i];
m += 1;
Modify(0, 1, n, a[i], n, -1);
if (mn[0] < 0) {
s -= pos[0];
m -= 1;
Modify(0, 1, n, pos[0], n, +1);
}
cout << s - m * (m + 1) / 2 << " \n"[i == n - 1];
}
}
return 0;
}
Problem author: tourist
Explanation
Tutorial is loading...
Code by tourist
#include <bits/stdc++.h>
using namespace std;
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
return *this;
}
private:
Type value;
};
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
Mint C(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
C(1 << n, 0);
vector<Mint> dp(1 << n);
dp[0] = (1 << n) * fact[1 << (n - 1)];
for (int rd = n - 2; rd >= 0; rd--) {
vector<Mint> new_dp(1 << n);
Mint sum = 0;
for (int i = 0; i < (1 << n); i++) {
new_dp[i] = sum * C((1 << n) - 1 - i - (1 << rd), (1 << rd) - 1) * fact[1 << rd];
sum += dp[i];
}
swap(dp, new_dp);
}
Mint sum = 0;
for (int i = 0; i < (1 << n); i++) {
cout << sum() << '\n';
sum += dp[i];
}
return 0;
}
Problem author: tourist
Explanation
Tutorial is loading...
Code by tourist
#include <bits/stdc++.h>
using namespace std;
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
string s;
cin >> s;
int len = (int) s.size();
vector<Mint> ans(3);
for (int use = 1; use < (1 << 4); use++) {
int pw = 1 << 8;
int init = 0;
for (int i = 0; i < 4; i++) {
init += i << (2 * i);
}
vector<vector<int>> go_state(pw, vector<int>(2));
vector<vector<int>> go_diff(pw, vector<int>(2));
for (int state = 0; state < pw; state++) {
for (int put = 0; put < 2; put++) {
int new_diff = 0;
int new_state = 0;
for (int i = 0; i < 4; i++) {
int to = (state >> (2 * i)) & 3;
if (put == 0) {
if (to & 1) {
if (use & (1 << i)) {
new_diff += 1;
}
to = 0;
} else {
to |= 1;
}
} else {
if (to & 2) {
if (use & (1 << i)) {
new_diff -= 1;
}
to = 0;
} else {
to |= 2;
}
}
new_state += to << (2 * i);
}
go_state[state][put] = new_state;
go_diff[state][put] = new_diff;
}
}
int limit = (len + 1) / 2 * 2 * __builtin_popcount(use);
vector<vector<Mint>> dp(2 * limit + 1, vector<Mint>(pw));
dp[limit][init] = 1;
for (char c : s) {
vector<vector<Mint>> new_dp(2 * limit + 1, vector<Mint>(pw));
for (int sum = 0; sum < (int) dp.size(); sum++) {
for (int state = 0; state < pw; state++) {
if (dp[sum][state] == 0) {
continue;
}
for (int put = 0; put < 2; put++) {
if ((put == 0 && c == 'b') || (put == 1 && c == 'a')) {
continue;
}
int new_sum = sum + go_diff[state][put];
int new_state = go_state[state][put];
new_dp[new_sum][new_state] += dp[sum][state];
}
}
}
swap(dp, new_dp);
}
for (int sum = 0; sum < (int) dp.size(); sum++) {
for (int state = 0; state < pw; state++) {
if (dp[sum][state] == 0) {
continue;
}
vector<int> to(4);
for (int i = 0; i < 4; i++) {
to[i] = (state >> (2 * i)) & 3;
}
vector<int> seq(1, 0);
while (true) {
int nxt = to[seq.back()];
bool done = false;
for (int i = 0; i < (int) seq.size(); i++) {
if (seq[i] == nxt) {
done = true;
seq.erase(seq.begin(), seq.begin() + i);
break;
}
}
if (done) {
break;
}
seq.push_back(nxt);
}
int real_use = 0;
for (int x : seq) {
real_use |= (1 << x);
}
if (use == real_use) {
ans[sum > limit ? 0 : (sum < limit ? 2 : 1)] += dp[sum][state];
}
}
}
}
for (int i = 0; i < 3; i++) {
cout << ans[i]() << '\n';
}
return 0;
}
Problem author: tourist
Explanation
Tutorial is loading...
Code by tourist, O(n^2)
#include <bits/stdc++.h>
using namespace std;
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
return *this;
}
private:
Type value;
};
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
Mint C(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
Mint ans = 1;
for (int p = 1; p <= k; p++) {
for (int q = 0; q <= max(0, k - 1 - p); q++) {
if (2 * (k - p - q) + 1 <= n - p) {
ans += (q == 0 ? 1 : C((k - 1 - p) - (q - 1), q));
}
}
}
for (int q = 1; q <= k - 1; q++) {
int pos = 2 * (k - q) + 2;
int shifts = max(1, pos - n);
int left = k - shifts;
ans += C(left - (q - 1), q);
}
cout << ans() << '\n';
return 0;
}
Code by tourist, O(n)
#include <bits/stdc++.h>
using namespace std;
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
return *this;
}
private:
Type value;
};
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
Mint C(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
Mint ans = 1;
for (int q = 0; q <= k - 1; q++) {
int bound = k - q - max(1, 2 * (k - q) - n + 1);
ans += C(bound + 1, q + 1);
}
for (int q = 1; q <= k - 1; q++) {
int pos = 2 * (k - q) + 2;
int shifts = max(1, pos - n);
int left = k - shifts;
ans += C(left - (q - 1), q);
}
cout << ans() << '\n';
return 0;
}
Thanks for the editorial,waiting from a long time.
Finally an editorial! After a long week and a half.
Another approach for B
If we are shifting to left it means we are moving in negative direction If we are shifting to right it means we are moving in positive direction
We can try all possible values of shifting by binary search, and compare if we want to shift in positive and negative direction and reduce the search space on each try
https://codeforces.me/contest/1786/submission/238301378
Why is it obvious that the ith cake should be below the ith dispenser ??It maybe that a cake's last part is below start of some dispenser and another cake is below the same dispenser ?@ashu.hua
help with B please? what goes wrong here?
appreciated. 262313860
Did anyone notice that the binomal in the the solution of F is wrong ?
Sorry I'm wrong
Please, can I have the case 193 for test 2 for the problem B.