Блог пользователя chokudai

Автор chokudai, история, 2 года назад, По-английски

We will hold AtCoder Beginner Contest 265.

The point values will be 100-200-300-400-500-500-600-600.

We are looking forward to your participation!

  • Проголосовать: нравится
  • +35
  • Проголосовать: не нравится

»
2 года назад, # |
Rev. 4   Проголосовать: нравится +6 Проголосовать: не нравится

Great Contest! enjoyed it... Finally I can now become Cyan on atcoder as well :P

UPD: Became Cyan (1200+) :P

Now I can participate in AGCs as well.

»
2 года назад, # |
  Проголосовать: нравится +25 Проголосовать: не нравится

pls name tasks next time like DP1, DP2, and so on

»
2 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

Did any other person get $$$20$$$ AC and $$$1$$$ TLE in $$$G$$$?

»
2 года назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Nice contest again, thanks.

But text of B was not optimal. The "time limit" is actually not a time limit, but the remaining time. Usually if we need x time units to do a step, and remaining time is x, then it is ok to do the step. But here it was not, we needed timelimit=x+1. I needed 4 submission to understand.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

New to atcoder, Apologies if its previously answered. Is there anyway we can see the testcase on which our code is failing?

»
2 года назад, # |
  Проголосовать: нравится +18 Проголосовать: не нравится

We realized tests of F are weak. (The code that generated tests contained a bug.) We added some tests like 99_after_contest_01.txt.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Let’s get back to the original problem. This case, the possible values of (x,y) is relatively small, so we can solve it in a total of $$$O(N^3(logN+logM))$$$ time by storing the DP table in a dictionary. If you use a fast language, your code will be accepted.

Can someone explain why the possible values of (x, y) are relatively small in problem E??

  • »
    »
    2 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +4 Проголосовать: не нравится

    While contest I assumed, since in each step we can make one of three choices, we can reach up to $$$3^n$$$ points.

    But that is misleading, since there are only 3 kinds of steps, and order of the single steps does not matter, it is less than $$$n^3$$$ different points possible.

    They can be described by dp[x][y][z] where $$$x+y+z\leq n$$$

    • »
      »
      »
      2 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      But that is misleading, since there are only 3 kinds of steps, and order of the single steps does not matter, it is less than $$$n^3$$$ different points possible.

      Can you explain this statement again? Thanks in advance.

»
2 года назад, # |
  Проголосовать: нравится +21 Проголосовать: не нравится

I think it was my first time solving G in the new ABC format, really happy about that, no longer stuck between 1600 and 1700. and interesting problems overall.

»
2 года назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

There is an error in the problem statement for Ex (No-capture Lance Game)

It says "The first player can move the piece at (1,7) to (1,4), (1,5), or (1,6); the second player can move the piece at (3,4) to (3,1), (3,2), or (3,3). The first player cannot move the piece at (2,1).", but the piece at $$$(3,4)$$$ belongs to the first player.

»
2 года назад, # |
  Проголосовать: нравится +76 Проголосовать: не нравится

Just realized (from Twitter) that sample input 3 of ABC 265 question C was not some random inputs. It is an ASCII art:

Move your head further away to see the ASCII art.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    I hadn't noticed it at that time but I noticed it now. ABC 265 is hidden under the test case. Hats off to the author/tester for the test case.

»
2 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

Does anyone have idea about ? Seems to be O(n^2D)