n is the number of vertex and Bruteforce is O(3^n)..Thanks in advance.
(it's a additional exercise of SRM487D1_550pt)
№ | Пользователь | Рейтинг |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 151 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
n is the number of vertex and Bruteforce is O(3^n)..Thanks in advance.
(it's a additional exercise of SRM487D1_550pt)
void exgcd(int a,int b,int &x,int &y)
{ if (b) {exgcd(b,a%b,y,x);y-=x*(a/b);} else x=1,y=0; } int main() { int x,y; for(int i=1;i<=1000;i++) for(int j=i;j<=1000;j++) { exgcd(i,j,x,y); assert(max(abs(x),abs(y))<=max(i,j)); } }
Sometimes I just want to review a topic which I have ever read before,but there is no convenient approach to find it unless it is still appeared in "recent actions".
(SRM 514 250) In this problem n or m will be 1 and there is a elegant conclusion to solve this problem -- if you have a (1,even),you can go any girds,and if you have a (1,odd),you can go to any girds(x,y) which x+y is even
Название |
---|