I received an email about an event.
Be careful not to provide your password there! This is a scam. After clicking on register page you are NOT getting redirected to codeforces!
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
I received an email about an event.
Be careful not to provide your password there! This is a scam. After clicking on register page you are NOT getting redirected to codeforces!
Hello!
Some time ago I created a problem for local programming competition. Unfortunately it turned out that I had incomplete proof of one lemma, that I can not show even to this day.
Lemma: Given an increasing array of $$$N$$$ arbitrary large numbers we define its cost as sum of lengths of all non-trivial, maximal arithmetic progressions starting at the first element. The cost of any array is $$$\mathcal{O}(N\log{N})$$$.
For example for array $$$[0, 2, 3, 4, 6, 8, 9]$$$ — the total cost is $$$|[0, 2, 4, 6, 8]| + |[0, 3, 6, 9]| + |[0, 4, 8]| + |[0, 6]| + |[0, 8]| + |[0, 9]| = 5 + 4 + 3 + 2 + 2 + 2= 18$$$.
It is easy to see, that if we simply take $$$N$$$ consecutive natural numbers we get $$$\mathcal{O}(N\log{N})$$$ cost, but I was not able to prove that this is the worst case scenario.
Best complexity I can show is $$$\mathcal{o}(N^2)$$$, but still far from the goal...
Can anyone show if the lemma is true or false?
Name |
---|