Can someone provide some insight on how to approach this problem ?
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Can someone provide some insight on how to approach this problem ?
You are given two strings a and b. Find shortest string which being repeated infinitely contains the both strings. I.e. find such shortest s that infinite string ss... s... contains a and contains b as a substring.
This problem is not from an ongoing contest. Those who have access to the group (Brazil ICPC Summer School 2018) can view it here!
Note : By tree I mean a weighted tree where each node has a weight.
Is there anyway to build the Cartesian Tree of a Tree efficiently (less than $$$O(n^2)$$$) ?
By Cartesian tree of a tree I mean the following:
Find the node with minimum weight in the Tree. Make it the root.
Recursively do this for each of the subtrees formed and attach their roots to the Earlier root.
I chose to call it Cartesian Tree because it is very similar to this.
Name |
---|