maximum LCM
Difference between en1 and en2, changed 2 character(s)
given an integer $n$, you have to find $a,b>0$ so that $a+b=n$ and $LCM(a,b)$ is maximum($LCM$ is the least common multiple of $a,b$).↵

printf the maximum $LCM(a,b)$↵

i have come up with a bruteforce solution. I will consider all pairs of $a,b$ that have sum equal to $n$. And calculate the value of ↵

$LCM(a,b)=(a*b)/GCD(a,b)$. (
$GCD$ is greatest common divisor).↵

But, this solution seems too slow when $n<=10^9$. Is there a better solution for this problem ?↵

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en2 English TuHoangAnh 2021-12-30 16:39:51 2 Tiny change: 'D(a,b)$. (GCD is greate' -> 'D(a,b)$. ($GCD$ is greate'
en1 English TuHoangAnh 2021-12-30 16:36:37 482 Initial revision (published)