Need Help in SG function (Game Theory)
Difference between en4 and en5, changed 132 character(s)
[user:nihal2001,2021-03-05] posted a [blog](https://codeforces.me/blog/entry/88374) for asking the following question:↵

There are $n$ stones,  two players take turn to choose $x$ stones, such that $1 \leq x \leq n$ and $x \And n = 0$. The one who cannot make choose lose.↵

Determine who is the winner, The first one or the second?↵

I [proved](https://codeforces.me/blog/entry/88374?#comment-767851) that If $n$ belongs to https://oeis.org/A295897, the second player win(can be solved in $O(\log n)$). ↵

My Question(Multiple piles version of above question):↵

There are $n_1, \cdots, n_m$ stones,  two players take turn to choose an index $i$ and $x_i$ stones, such that $1 \leq i \leq m$, $1 \leq x_i \leq n_i$ and $x_i \And n_i = 0$. The one who cannot make choose lose.↵

Who will be the winner?↵

This turn out to compute Sprague-Grundy function for $n_1 \cdots, n_m$. The first player win if and only if $sg(n_1) \wedge \cdots \wedge sg(n_m) \neq 0$↵

I know how to compute $sg(n)$ in $O(n^2 \log n)$, but I can't give it a formula or compute efficiently like $O(\log n)$ or $O(\log^2 n)$↵

Thanks in advance.


**UPD**: $O(n^{log_2 3} \log n)$ [implement](https://paste.ubuntu.com/p/cMFbnZtBDs/) based on [user:wery0,2021-03-08]'s comment.

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en7 English izlyforever 2021-03-08 18:10:39 16 Tiny change: 'ntu.com/p/FNN39PHqc6/) based o' -> 'ntu.com/p/cgVkGP6zdT/) based o'
en6 English izlyforever 2021-03-08 18:06:26 123
en5 English izlyforever 2021-03-08 14:49:54 132 Tiny change: 'vance.\n\nUPD: $O(n^{lo' -> 'vance.\n\n**UPD**: $O(n^{lo'
en4 English izlyforever 2021-03-05 02:23:53 30 Tiny change: 'player win. \n\nMy Q' -> 'player win(can be solved in $O(\log n)$). \n\nMy Q'
en3 English izlyforever 2021-03-05 02:18:22 0 (published)
en2 English izlyforever 2021-03-05 02:17:11 2 Tiny change: 'o compute sg(n) in $O(n^2' -> 'o compute $sg(n)$ in $O(n^2' (saved to drafts)
en1 English izlyforever 2021-03-05 02:16:30 1135 Initial revision (published)