Codeforces Round 257 (Div. 1) |
---|
Finished |
Jzzhu have n non-negative integers a1, a2, ..., an. We will call a sequence of indexes i1, i2, ..., ik (1 ≤ i1 < i2 < ... < ik ≤ n) a group of size k.
Jzzhu wonders, how many groups exists such that ai1 & ai2 & ... & aik = 0 (1 ≤ k ≤ n)? Help him and print this number modulo 1000000007 (109 + 7). Operation x & y denotes bitwise AND operation of two numbers.
The first line contains a single integer n (1 ≤ n ≤ 106). The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 106).
Output a single integer representing the number of required groups modulo 1000000007 (109 + 7).
3
2 3 3
0
4
0 1 2 3
10
6
5 2 0 5 2 1
53
Name |
---|