Pinely Round 1 (Div. 1 + Div. 2) |
---|
Finished |
Let $$$f(x,y)$$$ be the number of carries of $$$x+y$$$ in binary (i. e. $$$f(x,y)=g(x)+g(y)-g(x+y)$$$, where $$$g(x)$$$ is the number of ones in the binary representation of $$$x$$$).
Given two integers $$$n$$$ and $$$k$$$, find the number of ordered pairs $$$(a,b)$$$ such that $$$0 \leq a,b < 2^n$$$, and $$$f(a,b)$$$ equals $$$k$$$. Note that for $$$a\ne b$$$, $$$(a,b)$$$ and $$$(b,a)$$$ are considered as two different pairs.
As this number may be large, output it modulo $$$10^9+7$$$.
The only line of each test contains two integers $$$n$$$ and $$$k$$$ ($$$0\leq k<n\leq 10^6$$$).
Output a single integer — the answer modulo $$$10^9+7$$$.
3 1
15
3 0
27
998 244
573035660
Here are some examples for understanding carries:
$$$$$$ \begin{aligned} &\begin{array}{r} 1_{\ \ }1_{\ \ }1\\ +\ _{1}1_{\ \ }0_{\ \ }0\\ \hline \ 1_{\ \ }0_{\ \ }1_{\ \ }1 \end{array} &\begin{array}{r} \ 1_{\ \ }0_{\ \ }1\\ +\ _{\ \ }0_{\ \ }0_{1}1\\ \hline \ 0_{\ \ }1_{\ \ }1_{\ \ }0 \end{array} & &\begin{array}{r} \ 1_{\ \ }0_{\ \ }1\\ +\ _{1}0_{1}1_{1}1\\ \hline \ 1_{\ \ }0_{\ \ }0_{\ \ }0 \end{array} \end{aligned} $$$$$$
So $$$f(7,4)=1$$$, $$$f(5,1)=1$$$ and $$$f(5,3)=3$$$.
In the first test case, all the pairs meeting the constraints are $$$(1,1),(1,5),(2,2),(2,3),(3,2),(4,4),(4,5),(4,6),(4,7),(5,1),(5,4),(5,6),(6,4),(6,5),(7,4)$$$.
Name |
---|