F. Sum Over Subsets
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a multiset $$$S$$$. Over all pairs of subsets $$$A$$$ and $$$B$$$, such that:

  • $$$B \subset A$$$;
  • $$$|B| = |A| - 1$$$;
  • greatest common divisor of all elements in $$$A$$$ is equal to one;

find the sum of $$$\sum_{x \in A}{x} \cdot \sum_{x \in B}{x}$$$, modulo $$$998\,244\,353$$$.

Input

The first line contains one integer $$$m$$$ ($$$1 \le m \le 10^5$$$): the number of different values in the multiset $$$S$$$.

Each of the next $$$m$$$ lines contains two integers $$$a_i$$$, $$$freq_i$$$ ($$$1 \le a_i \le 10^5, 1 \le freq_i \le 10^9$$$). Element $$$a_i$$$ appears in the multiset $$$S$$$ $$$freq_i$$$ times. All $$$a_i$$$ are different.

Output

Print the required sum, modulo $$$998\,244\,353$$$.

Examples
Input
2
1 1
2 1
Output
9
Input
4
1 1
2 1
3 1
6 1
Output
1207
Input
1
1 5
Output
560
Note

A multiset is a set where elements are allowed to coincide. $$$|X|$$$ is the cardinality of a set $$$X$$$, the number of elements in it.

$$$A \subset B$$$: Set $$$A$$$ is a subset of a set $$$B$$$.

In the first example $$$B=\{1\}, A=\{1,2\}$$$ and $$$B=\{2\}, A=\{1, 2\}$$$ have a product equal to $$$1\cdot3 + 2\cdot3=9$$$. Other pairs of $$$A$$$ and $$$B$$$ don't satisfy the given constraints.